Novel Aggregative trans-eQTL Association Analysis of Known Genetic Variants Detect Trait-specific Target Gene-sets

Abstract

Large scale genetic association studies have identified many trait-associated variants and understanding the role of these variants in downstream regulation of gene-expressions can uncover important mediating biological mechanisms. In this study, we propose Aggregative tRans assoCiation to detect pHenotype specIfic gEne-sets (ARCHIE), as a method to establish links between sets of known genetic variants associated with a trait and sets of co-regulated gene-expressions through trans associations. ARCHIE employs sparse canonical correlation analysis based on summary statistics from trans-eQTL mapping and genotype and expression correlation matrices constructed from external data sources. We propose a resampling based procedure to test for significant trait-specific trans-association patterns in the background of highly polygenic regulation of gene-expression. By applying ARCHIE to available trans-eQTL summary statistics reported by the eQTLGen consortium, we identify 71 gene networks which have significant evidence of trans-association with groups of known genetic variants across 29 complex traits. A majority (50.7%) of the genes do not have any strong trans-associations and could not have been detected by standard trans-eQTL mapping. We provide further evidence for causal basis of the target genes through a series of follow-up analyses. These results show ARCHIE is a powerful tool for identifying sets of genes whose trans regulation may be related to specific complex traits.

Publication
In medRxiv
Ashis Saha
Ashis Saha
Principal Scientific Researcher

My research interests include computational biology and machine learning.

comments powered by Disqus